3.329 \(\int \frac{(-a+b x)^{3/2}}{x^2} \, dx\)

Optimal. Leaf size=57 \[ -\frac{(b x-a)^{3/2}}{x}+3 b \sqrt{b x-a}-3 \sqrt{a} b \tan ^{-1}\left (\frac{\sqrt{b x-a}}{\sqrt{a}}\right ) \]

[Out]

3*b*Sqrt[-a + b*x] - (-a + b*x)^(3/2)/x - 3*Sqrt[a]*b*ArcTan[Sqrt[-a + b*x]/Sqrt[a]]

________________________________________________________________________________________

Rubi [A]  time = 0.0143466, antiderivative size = 57, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 15, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.267, Rules used = {47, 50, 63, 205} \[ -\frac{(b x-a)^{3/2}}{x}+3 b \sqrt{b x-a}-3 \sqrt{a} b \tan ^{-1}\left (\frac{\sqrt{b x-a}}{\sqrt{a}}\right ) \]

Antiderivative was successfully verified.

[In]

Int[(-a + b*x)^(3/2)/x^2,x]

[Out]

3*b*Sqrt[-a + b*x] - (-a + b*x)^(3/2)/x - 3*Sqrt[a]*b*ArcTan[Sqrt[-a + b*x]/Sqrt[a]]

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{(-a+b x)^{3/2}}{x^2} \, dx &=-\frac{(-a+b x)^{3/2}}{x}+\frac{1}{2} (3 b) \int \frac{\sqrt{-a+b x}}{x} \, dx\\ &=3 b \sqrt{-a+b x}-\frac{(-a+b x)^{3/2}}{x}-\frac{1}{2} (3 a b) \int \frac{1}{x \sqrt{-a+b x}} \, dx\\ &=3 b \sqrt{-a+b x}-\frac{(-a+b x)^{3/2}}{x}-(3 a) \operatorname{Subst}\left (\int \frac{1}{\frac{a}{b}+\frac{x^2}{b}} \, dx,x,\sqrt{-a+b x}\right )\\ &=3 b \sqrt{-a+b x}-\frac{(-a+b x)^{3/2}}{x}-3 \sqrt{a} b \tan ^{-1}\left (\frac{\sqrt{-a+b x}}{\sqrt{a}}\right )\\ \end{align*}

Mathematica [C]  time = 0.0112193, size = 36, normalized size = 0.63 \[ \frac{2 b (b x-a)^{5/2} \, _2F_1\left (2,\frac{5}{2};\frac{7}{2};1-\frac{b x}{a}\right )}{5 a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(-a + b*x)^(3/2)/x^2,x]

[Out]

(2*b*(-a + b*x)^(5/2)*Hypergeometric2F1[2, 5/2, 7/2, 1 - (b*x)/a])/(5*a^2)

________________________________________________________________________________________

Maple [A]  time = 0.01, size = 48, normalized size = 0.8 \begin{align*} 2\,b\sqrt{bx-a}+{\frac{a}{x}\sqrt{bx-a}}-3\,b\arctan \left ({\frac{\sqrt{bx-a}}{\sqrt{a}}} \right ) \sqrt{a} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x-a)^(3/2)/x^2,x)

[Out]

2*b*(b*x-a)^(1/2)+a*(b*x-a)^(1/2)/x-3*b*arctan((b*x-a)^(1/2)/a^(1/2))*a^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x-a)^(3/2)/x^2,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.60363, size = 246, normalized size = 4.32 \begin{align*} \left [\frac{3 \, \sqrt{-a} b x \log \left (\frac{b x - 2 \, \sqrt{b x - a} \sqrt{-a} - 2 \, a}{x}\right ) + 2 \,{\left (2 \, b x + a\right )} \sqrt{b x - a}}{2 \, x}, -\frac{3 \, \sqrt{a} b x \arctan \left (\frac{\sqrt{b x - a}}{\sqrt{a}}\right ) -{\left (2 \, b x + a\right )} \sqrt{b x - a}}{x}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x-a)^(3/2)/x^2,x, algorithm="fricas")

[Out]

[1/2*(3*sqrt(-a)*b*x*log((b*x - 2*sqrt(b*x - a)*sqrt(-a) - 2*a)/x) + 2*(2*b*x + a)*sqrt(b*x - a))/x, -(3*sqrt(
a)*b*x*arctan(sqrt(b*x - a)/sqrt(a)) - (2*b*x + a)*sqrt(b*x - a))/x]

________________________________________________________________________________________

Sympy [B]  time = 3.56156, size = 201, normalized size = 3.53 \begin{align*} \begin{cases} - 3 i \sqrt{a} b \operatorname{acosh}{\left (\frac{\sqrt{a}}{\sqrt{b} \sqrt{x}} \right )} + \frac{i a^{2}}{\sqrt{b} x^{\frac{3}{2}} \sqrt{\frac{a}{b x} - 1}} + \frac{i a \sqrt{b}}{\sqrt{x} \sqrt{\frac{a}{b x} - 1}} - \frac{2 i b^{\frac{3}{2}} \sqrt{x}}{\sqrt{\frac{a}{b x} - 1}} & \text{for}\: \frac{\left |{a}\right |}{\left |{b}\right | \left |{x}\right |} > 1 \\3 \sqrt{a} b \operatorname{asin}{\left (\frac{\sqrt{a}}{\sqrt{b} \sqrt{x}} \right )} - \frac{a^{2}}{\sqrt{b} x^{\frac{3}{2}} \sqrt{- \frac{a}{b x} + 1}} - \frac{a \sqrt{b}}{\sqrt{x} \sqrt{- \frac{a}{b x} + 1}} + \frac{2 b^{\frac{3}{2}} \sqrt{x}}{\sqrt{- \frac{a}{b x} + 1}} & \text{otherwise} \end{cases} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x-a)**(3/2)/x**2,x)

[Out]

Piecewise((-3*I*sqrt(a)*b*acosh(sqrt(a)/(sqrt(b)*sqrt(x))) + I*a**2/(sqrt(b)*x**(3/2)*sqrt(a/(b*x) - 1)) + I*a
*sqrt(b)/(sqrt(x)*sqrt(a/(b*x) - 1)) - 2*I*b**(3/2)*sqrt(x)/sqrt(a/(b*x) - 1), Abs(a)/(Abs(b)*Abs(x)) > 1), (3
*sqrt(a)*b*asin(sqrt(a)/(sqrt(b)*sqrt(x))) - a**2/(sqrt(b)*x**(3/2)*sqrt(-a/(b*x) + 1)) - a*sqrt(b)/(sqrt(x)*s
qrt(-a/(b*x) + 1)) + 2*b**(3/2)*sqrt(x)/sqrt(-a/(b*x) + 1), True))

________________________________________________________________________________________

Giac [A]  time = 1.23978, size = 78, normalized size = 1.37 \begin{align*} -\frac{3 \, \sqrt{a} b^{2} \arctan \left (\frac{\sqrt{b x - a}}{\sqrt{a}}\right ) - 2 \, \sqrt{b x - a} b^{2} - \frac{\sqrt{b x - a} a b}{x}}{b} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x-a)^(3/2)/x^2,x, algorithm="giac")

[Out]

-(3*sqrt(a)*b^2*arctan(sqrt(b*x - a)/sqrt(a)) - 2*sqrt(b*x - a)*b^2 - sqrt(b*x - a)*a*b/x)/b